

Software Testing Plan

Version 1.0

April 5, 2019

Team Amadeus

Mentor: Austin Sanders

Sponsors: Dr. Hélène Coullon & Frédéric Loulergue

Members: Wyatt Evans, Kyle Krueger, Melody Pressley, Evan Russell

1

Table of Contents

1. Introduction 2

2. Unit Testing 4

3. Integration Testing 7

4. Usability Testing 9

5. Conclusion 11

2

1. Introduction

Software deployment is an integral part of modern software development. Whether

installing new security software on all the computers in an office network, or updating an

app on thousands of devices across the cloud, software needs to be deployed often and

efficiently. However, deploying large, complex pieces of software can be a difficult

matter, and since all software is unique, all software deployment processes must also be

unique.

There have been numerous solutions developed to make this process easier, such as

Ansible or Kubernetes. However, most are inefficient and take much longer to deploy

than they should, or are made for simpler micro-deployments. So far there have been no

significant solutions that take advantage of concurrency and parallelism to the extent that

they could.

Our project sponsor, Dr. Hélène Coullon, is a researcher with the STACK team at Inria -

the French national research institute on computer science. Their work has produced

Madeus: a theoretical model for software deployment. Madeus defines the deployment

process in parts via a well-defined mathematical syntax and a corresponding Petri net-

inspired diagram. The model also expresses every dependency between different software

components. This enables software deployment to be performed concurrently, with

different components executing deployment independently until a dependency is

required. (See Section 8, pg. 16 for more details).

MAD (the Madeus Application Deployer), also an Inria project, is a Python

implementation of the Madeus model; its goal is to allow users to deploy software

according to the model. MAD provides an explicit syntax to Madeus by defining all

aspects of it within Python modules. Together, MAD and Madeus have been found to

deploy software up to twice as fast as some of the competing software. However, the

efficiency of MAD’s execution and deployment has come at the cost of simplicity and

ease of use.

The team at Inria wants the Madeus model to be easier and more accessible for

developers, so that the efficiency of this model can be fully realized. Thus, our solution is

a GUI that enables users to utilize the Madeus model via the “Petri net-inspired

diagram[s]” described above, rather than the specifics of a Python class. Our GUI, named

the MAD Assembly Builder (MAB), will serve as a visualization tool for developers so

that they can focus on the creation of a diagram, and generate functional, deployable,

3

MAD code representative of their assembly without having to go through the tedious

process of coding it themselves.

In this document, we will be detailing our software testing plan for the development of

MAB. Software testing is an important part of the software development process; it is

how developers are able to determine the quality and usability of a piece of software to

ensure that the product they are developing is working as it is meant to. For MAB, this

testing phase is important in order to guarantee that the software correctly generates

Madeus assemblies. If this integral task, and the tasks that facilitate it, are significantly

flawed, then the resulting assemblies will be flawed as well. At best, this would make

MAB useless - at worst, it would lead to the deployment of incorrect assemblies,

potentially causing widespread problems for the software being deployed (as well as the

systems they are deployed on) which could prove costly for clients utilizing our software.

Our software testing plan involves three kinds of testing: unit testing, integration testing,

and usability testing. For unit testing, we will be ensuring that the important functions

used for the creation, management, saving, and loading of Madeus assemblies all lead to

the correct results. Due to the nature of MAD as a graphical user interface and the

language used being Javascript, unit testing will not be used as much as in other projects,

since there are not many areas where it is applicable. For integration testing, we will be

going through a series of tests to ensure that the front-end user interface interacts

correctly with the back-end data structure. Additionally, we will be testing that the UI and

data structure are properly integrated with the four plugins we have developed, and

finally checking that the plugins do not cause problems for each other. For usability

testing, we will outline our plan for conducting tests with people who have similar

backgrounds as our envisioned end-users with the purpose of ensuring that our software

can be used as intended.

4

2. Unit Testing

Unit testing is a level of software testing where individual units/components of software

are tested. The purpose of unit testing is to validate that each unit of software performs as

it was designed. A unit is the smallest testable part of any software - for example,

individual functions may be a unit. They usually have one or several inputs and usually

have a single output. When procedural programming is used, a unit may be an individual

program, function, procedure, etc. When object-oriented programming is used, the

smallest unit is a method, which may or may not belong to a base/super class, abstract

class, or derived/child class.

JavaScript being the main programming language in use inherently introduces challenges

for unit testing. Some of those challenges are that JavaScript does not natively support

unit testing in browsers, JavaScript cannot understand some system actions with the use

of other languages, some JavaScript is written for a web application that may have

multiple dependencies, JavaScript introduces difficulties with page rendering and DOM

manipulation, and etc.

To combat the inherently introduced JavaScript challenges, we are going to perform

individual tests of MAB’s most important functions. The most important functions in the

MAB codebase (including pre-packaged plugins) are:

1. addNewComponent()

2. addNewPlace()

3. addNewTransition()

4. addNewServiceDependency()

5. addNewDataDependency()

6. addNewConnection()

7. saveAssembly()

8. loadAssembly()

9. createComponentString()

10. createAssemblyString()

11. bootstrap()

Many of MAB’s most important functions require the preexistence of certain elements.

For example, a place can only be created inside a pre existing component, a transition can

only be created between two pre existing places, and so on. For testing documentation

purposes all valid arguments imply these pre existing dependencies have been

established.

5

Function

Being

Tested

Description Expected Result Equivalence

Partitions

1 Add a new component to the

workspace by calling the

addNewComponent()

function with valid

arguments.

The data structure will

accurately represent the

newly created component.

The user interface will show

the newly created

component.

N/A

2 Add a new place to a

component by calling the

addNewPlace() function with

valid arguments.

The component’s place data

structure will accurately

represent the newly created

place. The user interface

will show the newly created

place.

N/A

3 Add a new transition by

calling the

addNewTransition() function

with valid arguments.

The component’s transition

data structure will

accurately represent the

newly created transition.

The user interface will show

the newly created transition.

N/A

4 Add a new service

dependency by calling the

addNewServiceDependency()

function with valid

arguments.

The component’s

dependency data structure

will accurately represent the

newly created dependency.

The user interface will show

the newly created service

dependency.

N/A

5 Add a new data dependency

by calling the

addNewDataDependency()

function with valid

arguments.

The component’s

dependency data structure

will accurately represent the

newly created dependency.

The user interface will show

the newly created data

dependency.

N/A

6

6 Add a new connection by

calling the

addNewConnection()

function with valid

arguments.

The connection data

structure will accurately

represent the newly created

connection. The user

interface will show the

newly created connection.

N/A

7 Create a new save yaml file

by calling saveAssembly()

function with valid

arguments.

A corresponding yaml file

will be created and will

accurately represent the

created assembly.

N/A

8 Call the loadAssembly()

function with valid

arguments.

An assembly will be

dynamically built in the

user interface’s workspace

based off the textual

representation inside of the

chosen yaml file.

Correct file

type, Correct

serialized

structure of

each element

type,

Correctly

ordered

serialization

9/10 Call the

createComponentString() and

createAssemblyString()

function with valid

arguments.

Corresponding Python files

will be created and will

accurately represent the

currently created assembly

being built in the user

interface.

N/A

11 Call the bootstrap() function

in the Simulate Deployment

plugin with valid arguments.

A read-only layer will be

added to the workspace

which will spawn

corresponding self-moving

objects that will simulate

the deployment of the

currently created assembly

being built in the user

interface.

N/A

7

The controls of MAB are implemented through event listeners of specific inputs. This

ensures MAB’s codebase has been written with restrictions in place that will prohibit the

user from performing an illegal action or to call a constructor function with erroneous

inputs. The selected inputs therefore automatically create the equivalence partitions. If

the user is attempting to create a new place outside of a currently existing component,

MAB will ignore these actions and wait for a legal action to occur. However, there is a

risk of attempting to load a file that is not a correctly serialized assembly. For this reason

we need to implement a series of equivalence partitions to test against to ensure a file the

user is attempting to load into MAB is a valid assembly.

3. Integration Testing

Integration testing is used to ensure that different modules of a software interact with

each other properly. For MAB we will be using integration testing to test that our front-

end user interface and our back-end data structure are linked correctly, and then test that

the back-end data structure is accessed and updated properly by our four plugins:

Generate Code, Simulate Assembly, Save Assembly, and Load Assembly. To this end,

we will be using a top-down integration approach, beginning with the user interface and

then branching into the plugins.

8

Test

Case

ID

Objective Description Expected Result

1 Test the link

between the

user interface

and the data

structure.

Build an assembly with all

pieces, and observe the

updated data structure

during each step. Compare

this with a premade test

data structure.

The data structure will

dynamically and accurately

represent the assembly being built

in the user interface at every point

in the creation process. The

resulting data structure should

match the premade data structure.

2 Test the link

between the

data structure

and the

“Generate

Code” plugin.

Build an assembly with all

pieces, and execute the

“Generate Code” plugin.

Compare this to premade

python files containing a

Madeus assembly

The generated python code will

accurately match the assembly

that was built. The resulting files

should be the same as the

premade files.

3 Test the link

between the

data structure,

user interface,

and the

“Simulate

Assembly”

plugin.

Build an assembly with all

pieces, and execute the

“Simulate Assembly”

plugin.

The simulation that runs will

accurately match the assembly

that was built, in regards to visual

accuracy and runtime.

4 Test the link

between the

data structure

and the “Save

Assembly”

plugin.

Build an assembly with all

pieces, and execute the

“Save Assembly” plugin.

Compare the result with a

premade YAML file

representing the same

assembly.

The generated YAML file will

accurately match the assembly

that was built, translated to a

human-readable format. The

contents of the resulting YAML

file should match the contents of

the premade YAML file.

5 Test the link

between the

“Load

Assembly”

plugin, the

data structure,

and the user

interface.

Execute the “Load

Assembly” plugin,

selecting a YAML file

created by the “Save

Assembly” plugin.

Compare the result to a

hand-made assembly made

from the same YAML file.

The user interface and the data

structure will both be updated to

accurately show the assembly as

it is described in both of the

YAML files. Both of the YAML

files should show identical

assemblies in the MAB user

interface.

9

These test cases have been selected because they highlight all of the direct interactions

between the modules of MAB. Since MAB is built as an extensible software, and we

have implemented many of its features as plugins, there are no long chains of module

interactions. All of the pre-made MAB plugins only rely on the data structure, the user

interface, or both, and therefore do not need to be tested for integration with any other

plugins.

4. Usability Testing

The purpose of usability testing is to give our system the opportunity to be used by real

users. Close observation of the ways that users use our software (and in some cases, the

ways they don't) during this stage of testing can highlight potential mistakes our team has

made throughout the course of development. This phase is particularly useful because it

can test the integrity of certain components in our software that can't be tested

programmatically - for example, the ability of our UI to visually communicate its

functionality to an end-user.

MAB will primarily be used as a way to interface with MAD; as such, our user base will

be comprised mostly of other software engineers, or at the very least people familiar with

(or interested in) software deployment. All of this implies some level of technological

familiarity of our general targeted audience - our prospective individuals for usability

testing should reflect this. Therefore our candidates will consist of students majoring in

Computer Science at NAU who are at least in their Junior year. This guarantees our

testing group will have a similar technological background as our expected end-users.

We plan to briefly introduce users to our system and then put them through a series of

initial tests that will help our team identify any potential flaws in our system, especially

in terms of the UI. Afterwards we will provide a short survey so that users may verbalize

any difficulties they had that we didn't pick up on through observation.

10

Test

Case

ID

Objective Description Expected Result

1 Build a

simple

assembly

Given a written description, users

should build a 2- component

assembly with 2 places each, 1

transition each, and 1 dependency

each, with 1 connection total.

Given a brief introduction

to our system, users should

be able to build the target

assembly within 60 seconds

(1min).

2 Build an

intermediate

assembly

Given a written description, users

should build a 3- component

assembly with 3 places each, 4

transitions each, and 1-2

dependencies each, with 2

connections total

Given a brief introduction

to our system, users should

be able to build the target

assembly within 150

seconds (2.5min).

3 Build an

advanced

assembly

Given a written description, users

should build a 4-component

assembly with 4 places each, 5-8

transitions each, and 1-2

dependencies each, with 4

connections total

Given a brief introduction

to our system, users should

be able to build the target

assembly within 300

seconds (5min).

4 Save/Load

an assembly

After making any assembly, users

should be able to save an

assembly, restart the program, and

load an assembly without being

instructed on where saving/loading

functionality lies.

After making an assembly,

a user should be able to

save/load within 60 seconds

(1min).

5 Survey Users will complete a 3-question

survey: “Are there any specific

things you found yourself

struggling with?”, “What would

you like to see changed about the

system?”, and “On a scale of 1-10

how would you rate your

experience today?”

On completion of the

survey, our team should

have a better understanding

of the user's thoughts on

our system and any

shortcomings we may have

not gathered through

observation.

11

5. Conclusion

Software deployment can be a complex process; many solutions have been developed,

such as Ansible or Kubernetes, but these often lack performance, resulting in slow

deployment times. Madeus is a highly efficient software deployment model that leverages

any opportunities for parallelism, which significantly improves deployment times.

MAD is a Python implementation of the Madeus model, allowing users to program a

Madeus assembly and execute the representative deployment process. However, MAD

can be complicated and tedious to implement and its parallelism creates complexity when

it comes to understanding the dependencies between the different tasks in its deployment

process. It is also difficult to edit, because changing one element of an assembly could

require numerous other parts of the code to be changed.

Our Graphical User Interface will help visualize, create, and maintain the complex

parallelized deployment schemes that drive MAD. As a result, it will reduce the

complexity for the end-user wanting to use Madeus/MAD to deploy a distributed

software system.

Additionally, our plugin framework and the features that are implemented through this

framework will ensure the longevity of the software. The documentation we are

developing alongside MAB, as well as the open source nature of the software, will help

to facilitate the development of future plugins, so that as the needs of the developer

inevitably expand and change, MAB can change as well in order to better meet those

needs.

This document aims to outline our software testing plan is a way that explains not only

our plan, but our reasoning for having this particular plan. This document outlines details

of this plan such as unit testing, integration testing, and usability testing, which are the

three testing styles that we are using for this project. With this testing plan in place we

hope to ensure that our product will work as intended, and satisfy our clients.

